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Abstract
The symplectic geometry of the phase space associated with a charged particle
is determined by the addition of the Faraday 2-form to the standard dp ∧ dq

structure on R2n. In this paper, we describe the corresponding algebra of Weyl-
symmetrized functions in operators q̂, p̂ satisfying nonlinear commutation
relations. The multiplication in this algebra generates an associative ∗
product of functions on the phase space. This ∗ product is given by an
integral kernel whose phase is the symplectic area of a groupoid-consistent
membrane. A symplectic phase space connection with non-trivial curvature
is extracted from the magnetic reflections associated with the Stratonovich
quantizer. Zero and constant curvature cases are considered as examples.
The quantization with both static and time-dependent electromagnetic fields
is obtained. The expansion of the ∗ product by the deformation parameter
h̄, written in the covariant form, is compared with the known deformation
quantization formulae.

PACS numbers: 03.65.Sq, 03.65.Vf

1. Introduction

An associative non-commutative multiplication of functions on phase space, corresponding
to the Poisson structure, is called a quantization. On general phase spaces, i.e. on
symplectic manifolds having a symplectic connection, there is now a well-developed scheme
of deformation quantization [1–6]. This fundamental theory is formulated in symplectic
terms, but is based on formal asymptotic expansions and generally does not have an operator
representation in Hilbert space.

Only a few examples are known where the quantization is perfect, that is:

• it is exact, rather than expressed via asymptotic series;
• it has an operator representation in a Hilbert space (corresponding to Schrödinger quantum

mechanics); and
• it is given explicitly and purely in symplectic terms.
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The first two conditions from this list are realized in certain examples of the strict deformation
quantization [7, 8] and in the tangential groupoid quantization [9, 10], but the last (geometrical)
criterion is not fulfilled.

The only known perfect examples are related to the phase space T ∗Rn = R2n with
canonical symplectic structure and the trivial connection, or to cylinder-type spaces, where
the coordinates are subject to periodicity conditions [11], or to a generic symplectic form
but with a flat (zero curvature) symplectic connection [12, 13]. We do not refer here to the
homogeneous Kählerian spaces where the quantization by coherent states could be considered
as perfect, but involves symplectic areas in a complexified phase space.

The example of perfect quantization which we construct in the present paper is concerned
with non-zero and non-constant phase space curvature. The formalism allows one to represent,
in a manifestly gauge invariant and covariant manner, the dynamics of a charged particle in an
electromagnetic field realized in terms of a quantum phase space.

There are two ways to introduce the magnetic coupling into quantum mechanics. The first
is based on the interpretation of the magnetic potential as a connection form in the U(1)-bundle
over the configuration space and subsequently considers the corresponding modification of the
dynamical (Schrödinger, Klein–Gordon, etc) equations. The second approach incorporates
the idea of modifying the usual symplectic form dp∧dq on phase space by adding the Faraday
2-form and then quantizing this new symplectic space, and in particular, representing functions
on this space by operators. The present paper employs this second method.

We consider the phase space R2n = Rn
q ⊕ Rn

p with the following ‘magnetic’ symplectic
form

ω = dp ∧ dq + 1
2F(q) dq ∧ dq. (1.1)

The coordinates p have the physical interpretation of the gauge invariant (kinetic) momenta
and F is a skew tensor on the configuration space Rn

q representing the magnetic portion of the
electromagnetic field, cf [14]. The closedness of form (1.1) is equivalent to the homogeneous
Maxwell equation for the Faraday tensor F. The charge coupling constant and the speed of
light are all set equal to 1.

The non-degenerate symplectic form (1.1) is a simple modification of the canonical form
dp ∧ dq, but nevertheless the appearance of a generic tensor F makes the structure of the
quantum phase space rather non-trivial. In general, we assume that the components of the
tensor F(q) are nonlinear functions of q, but note that the linear and constant cases still provide
interesting physical examples.

Our procedure for constructing the quantum phase space is the following. First, we
quantize the Poisson brackets related to the form ω and immediately obtain the commutation
relations between the quantum coordinates

[q̂j , q̂s] = 0 [q̂j , p̂s] = ih̄δj
s [p̂j , p̂s] = ih̄Fsj (q̂). (1.2)

The nonlinearity of F in the momentum commutation relations means that Lie algebra
techniques are not applicable here. Furthermore, as we shall see, it is precisely this nonlinearity
that is responsible for the appearance of quantum phase space curvature.

It is easy to represent relations (1.2) in terms of self-adjoint operators on L2(Rn) and then
to construct the Weyl-symmetrized functions of those operators, specifically

f̂ = f (q̂, p̂) = f

 1
q̂ +

3
q̂

2
,

2
p̂

 . (1.3)
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The over numbering of the operators indicates the order in which they act on a target
wavefunction as in [15]. Thus, we have a linear mapping f → f̂ . Considering this mapping
as an operator-valued linear functional, we can represent it in the integral form

f̂ =
∫

f (x)�(x) dx. (1.4)

Here x = (q, p) denote phase space points. In this way, we shall obtain a family of operators
(quantizers) �(x) acting in the same Hilbert space where the representation of algebra (1.2)
is given. De-quantization, the inverse map to (1.4), is also constructed by the quantizer. We
shall see that for a suitable class of operators,

f (x) = (2πh̄)n tr(f̂ �(x)). (1.5)

We say that f is the (magnetic) symbol image of the operator f̂ .
The family � in the case of zero magnetic tensor was first introduced in [16] and has

since been intensively studied for algebras with linear commutation relations in [10, 13, 17].
For general nonlinear tensors F in (1.2) the quantizer � is still well defined and possesses

the following basic properties:

(i) the elements of � are linearly independent, invertible and resolve the identity;
(ii) the linear envelope of elements of � forms an algebra.

The ‘structure constants’ of this algebra generate a non-commutative ∗ product of
functions on phase space,

f̂ ∗ g = f̂ ĝ. (1.6)

We call ∗ a magnetic product. This product satisfies the correspondence principle:

f ∗ g = fg − ih̄

2
{f, g} + O(h̄2) as h̄ → 0

(as is usual in the deformation quantization scheme), where {·, ·} denotes the Poisson bracket
related to the symplectic form (1.1) and fg is the commutative product of functions.

Our main goal is to interpret this magnetic product geometrically, and to demonstrate how
the quantizer generates a phase space connection.

First, we shall see that the quantizer �(z) generates a symplectic transformation
σz : x → x ′ in R2n. This transformation is given by the Fock-type formula [18]:

�(z)−1x̂�(z) = x̂ ′. (1.7)

Here x̂ = (q̂, p̂) is the set of generators appearing in (1.2), and x̂ ′ = (q̂ ′, p̂′) is a new set (with
the same commutation relations). The symbol image of (1.7) defines σz.

For each z ∈ R2n the mapping σz : R2n → R2n preserves the symplectic form ω, has the
fixed point z = σz(z), and is an involution: σz

2 = id. We call σ = {σz} a family of magnetic
reflections. Using these reflections one can realize the symplectic groupoid multiplication
rule corresponding to relations (1.2) [19, 20]. Then for each triplet of points z, y, x we can
construct a membrane �(z, y, x) in R2n whose boundary is consistent with the groupoid
structure; namely a boundary consisting of three linked σ -reflective curves with mid-points
z, y, x.

Based on our previous results [19, 21], we shall obtain the following formula for the
magnetic non-commutative product:

(f ∗ g)(z) = 1

(πh̄)2n

∫ ∫
exp

{
i

h̄

∫
�(z,y,x)

ω

}
f (y)g(x) dy dx. (1.8)
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So, we see that the membrane WKB phase of the ∗ product integral kernel, conjectured
in [22] for symmetric symplectic manifolds, is realized in the magnetic phase space exactly,
without the need for a WKB expansion.

The product (1.8) is strict (not formal). Its asymptotic expansion as h̄ → 0 can be written
in the bi-differential covariant form

f ∗ g = fg − ih̄

2
f 〈←−∇ �

−→∇ 〉g − h̄2

8
f 〈←−∇ �

−→∇ 〉2g + O(h̄3). (1.9)

Here � = [
0 −I
I F

]
is the Poisson tensor corresponding to the symplectic structure ω. The

covariant derivative ∇ acts either on the left multiplier or the right multiplier as indicated by
the arrows but does not act on the argument of �. The derivative above corresponds to a
connection on the phase space R2n defined by the following Christoffel symbols:

�
j

sl(x) = −1

2

∂2σz(x)j

∂xs∂xl

∣∣∣∣
z=x

. (1.10)

We call this a magnetic connection. It is symplectic: ∇ω = 0. We emphasize that this phase
space connection is generated by the tensor F given on configuration space Rn

q , but � is not a
Riemannian-type connection.

All the higher terms O(h̄k) in (1.9) contain the Poisson bracket contribution f 〈←−∇ �
−→∇ 〉kg

plus additional terms generated by the curvature of �, so that

f ∗ g = f exp

{
− ih̄

2
〈←−∇ �(x)

−→∇ 〉 +
ih̄3

48
Rijkl(

−→∇ i

−→∇ j

−→∇ k

←−∇ l − ←−∇ i

←−∇ j

←−∇ k

−→∇ l ) + O(h̄4)

}
g

(1.11)

where R is the curvature tensor with all indices raised by the Poisson structure.
If the tensor F is quadratic in Euclidean coordinates on Rn

q , then the curvature tensor R on

the phase space R2n = T ∗Rn is constant but non-zero. This case provides a rather interesting
example of a symmetric symplectic space (in the terminology of [23]). Here the mappings σ

possess an additional property

σyσzσy(x) = σσy(z)(x) ∀ x, y, z (1.12)

and the connection (1.10) is recognized as the Cartan–Loos canonical connection [24]
corresponding to the family of σ -symmetries.

In the Riemannian setting, Cartan [25] called this class of spaces ‘remarkable’. In our
magnetic framework this symmetric structure does not belong to Riemannian geometry but
still is remarkable. The commutation relations (1.2) in this case look quadratic

[q̂j , q̂s] = 0 [q̂j , p̂s] = ih̄δj
s [p̂j , p̂s] = ih̄Fsj,kl q̂

kq̂l . (1.13)

The integral formula (1.8) for the associative product corresponding to this quadratic relations
employs membranes �(z, y, x) bounded by just geodesics of the Cartan–Loos connection. In
the bi-differential formula (1.11) the O(h̄4) remainder vanishes in this case.

So, in summary, the new features developed in the paper are:

• construction of a phase space connection and curvature generated by a generic (electro)
magnetic tensor;

• geometric groupoid interpretation of membrane areas in the integral formula for the
associative product corresponding to the nonlinear commutation relations (1.2);
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• realization of the symmetric symplectic structure related to quadratic brackets (1.13) and
its explicit quantization by means of geodesically bounded membranes or by the curvature
generated bi-differential exponent.

This paper is organized as follows. Section 2 describes representations of the quantizer
and the construction of the reflection map σx . The magnetic ∗ product and its groupoid aspects
are discussed in section 3. The magnetic connection is found in section 4 and the curvature
features of the h̄ deformation expansion the ∗ product are presented there. The role of the
electric field is clarified in section 5. The next two sections treat the zero-curvature and
constant-curvature cases.

The preprint version of this paper is found in quant-ph/0311053.

2. Quantizer and magnetic reflections

First we make a general remark about the operator calculations made below. All of them
are simple direct constructions and all the formulae are obtained explicitly, although from the
view point of functional analysis, the presentation of results often looks formal. But actually
the suppressed functional analysis details are standard (about this, see the remarks at the end
of section 3) and of limited usefulness in clarifying the new objects and results coming out
of the calculus. Of course, it is known that the use of formal methods in non-commutative
analysis (even for algebras with the simplest Heisenberg commutation relations) can lead to
errors. A list of problems demonstrating the ‘dangerous’ areas where the formal analysis gives
incorrect results is found in the book [20], appendix 1. However, the derivations below are far
from these sensitive analytical areas.

In this section, we review the definition of the magnetic quantizer and introduce the
associated reflective structure.

The irreducible representation of commutation relations (1.2) in the Hilbert space L2(Rn)

is given by the operators

q̂j : ψ(q ′) �→ q ′jψ(q ′) p̂j : ψ(q ′) �→ −ih̄
∂ψ(q ′)
∂q ′j − Aj(q

′)ψ(q ′). (2.1)

Here q ′ is running over Rn, and Aj are components of the 1-form A = Aj(q
′) dq ′j which is a

primitive of the Faraday 2-form 1
2Fjk(q

′) dq ′k ∧ dq ′j , namely

∂Aj (q
′)

∂q ′k − ∂Ak(q
′)

∂q ′j = Fjk(q
′). (2.2)

The operators (2.1) are well defined on a dense domain in L2(Rn) and essentially self-
adjoint. Thus one can consider Weyl-symmetrized functions of these operators following the
general definitions in [26, 27, 20]. In detail, we take smooth and rapidly decaying functions
f = f (x), introduce their Fourier transform f̃ and obtain operators in L2(Rn) via

f̂ =
∫

f̃ (η) exp
{ i

h̄
ηx̂

}
dη x̂ = (q̂, p̂). (2.3)

It is easy to see that

exp
{ i

h̄
ηx̂

}
= exp

{ i

2h̄
ηq q̂

}
exp

{ i

h̄
ηpp̂

}
exp

{
i

2h̄
ηq q̂

}
(2.4)

where ηq and ηp are just the components of the vector η ∈ Rn
q ⊕ Rn

p.



2350 M V Karasev and T A Osborn

From factorization (2.4) we observe that formula (1.3) follows. Also, from the definition
of momentum operators (2.1) we have

exp
{ i

h̄
ηpp̂

}
= exp

{
ηp

∂

∂q ′ − i

h̄
ηpA(q ′)

}

= exp

ηp

2
∂

∂q ′ − i

h̄

∫ 1

0
ηpA((1 − τ)

3

q ′ + τ
1

q ′)dτ


= exp

{
− i

h̄

∫ 1

0
ηpA((1 − τ)q ′ + τ(q ′ + ηp)) dτ

}
exp

{
ηp

∂

∂q ′

}
.

So, on any function ψ ∈ L2(Rn) this operator exponential acts as follows:

exp
{ i

h̄
ηpp̂

}
ψ(q ′) = exp

{
− i

h̄

∫ 1

0
ηpA(q ′ + τηp) dτ

}
ψ(q ′ + ηp)

= exp

{
− i

h̄

∫ q ′+ηp

q ′
A

}
ψ(q ′ + ηp)

where the integral of the 1-form A is taken along the straight-line segment in Rn connecting
q ′ to q ′ + ηp.

Thus formula (2.4) implies

exp
{ i

h̄
ηx̂

}
ψ(q ′) = exp

{
i

2h̄
ηqηp − i

h̄

∫ q ′+ηp

q ′
A +

i

h̄
ηqq

′
}

ψ(q ′ + ηp). (2.5)

Taking the inverse Fourier transform of (2.3) and representing the operators f̂ in the form
(1.4) we obtain the quantizer acting on the function ψ ,

�(q, p)ψ(q ′) = 1

(πh̄)n
exp

{
2i

h̄
p(q ′ − q) +

i

h̄

∫ q ′

2q−q ′
A

}
ψ(2q − q ′). (2.6)

Observe that the point 2q − q ′ in the rightmost ψ is just the original q ′ reflected through the
point q with respect to the Euclidean structure on Rn. The integral kernel statement equivalent
to (2.6) is

〈q ′|�(q, p)|q ′′〉 = (2πh̄)−nδ

(
q ′ + q ′′

2
− q

)
exp

{
i

h̄
p(q ′ − q ′′) +

i

h̄

∫ q ′

q ′′
A

}
. (2.7)

The delta function forces the value of the midpoint (q ′ + q ′′)/2 to be q. The representations
(2.6) and (2.7) are similar to those used by Stratonovich [28] in defining the gauge invariant
Wigner transform.

Using the above representations it is easy to verify the following properties of the family
of operators �(x) (x = (q, p) ∈ R2n) acting in the Hilbert space L2(Rn).

Lemma 1.

(i)
∫

�(x) dx = I ;
(ii) �(x)† = �(x),�(x)2 = 1

(πh̄)2n I ;
(iii) tr �(x1)�(x2) = (2πh̄)−nδ(x1 − x2), tr �(x) = (2πh̄)−n.

The trace used above is understood in the distributional sense, so that the generalized
functions tr �(x) and tr(�(y)�(x)) are naturally defined as distributions on R2n and R2n×R2n

respectively, that is the operator-valued functions � are first integrated in the Bochner sense
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with test functions and after that the trace operation is applied. The operator identities and
equations above and throughout the text are considered in the sense of the strong topology on
a dense domain and then extended (where possible) to the whole Hilbert space L2(Rn).

Equation (i) in lemma 1 says that {�(x)} is a resolution of the identity; as an example
of (1.4) it states that the unit symbol f (x) = 1 is quantized to the identity operator, f̂ = I .
Property (ii) shows that �(x) are bounded self-adjoint operators in L2(Rn) with norm (πh̄)−n;
modulo a rescaling, �(x) is the unitary operator. The first part of (iii) in combination with
(1.4) establishes that the de-quantization map f̂ → f is given by the trace identity (1.5) and,
as a consequence, that the symbol of �(x) is the delta function δx .

We now consider the construction of the reflection map induced by �(x). Given (2.6) the
intertwining identities readily follow:

q̂j�(q, p) = �(q, p)(2q − q̂)j

p̂j�(q, p) = �(q, p)(2p − p̂ − α̂q)j
j = 1, . . . , n. (2.8)

Here αq is the following vector function:

αq(q
′) = A(q ′) + A(2q − q ′) − ∂

∂q ′

(∫ q ′

2q−q ′
A

)
. (2.9)

A simple calculation shows one can restate this in a gauge invariant fashion as the average of
the magnetic tensor F,

αq(q
′) =

∫ 1

−1
F(q + µ(q ′ − q))(q ′ − q)µ dµ. (2.10)

Left multiply (2.8) by �(x)−1 and thereby obtain x ′ → σx(x
′) as

σx(x
′) = 2x − x ′ −

(
0

αxq
(x ′

q)

)
(2.11)

where xq and x ′
q denote the q-components of the phase space points x and x ′.

Lemma 2. The family of mappings {σx} in the magnetic phase space ≺ R2n, ω � possesses
the following properties:

(i) σx(x) = x,∀x;
(ii) σ 2

x = id;
(iii) σx is symplectic, i.e. preserves the magnetic 2-form ω.

Proof. Part (i) follows from αq(q) = 0, and (ii) from αq(2q − q ′) = αq(q
′). Property

(iii) is a result of the fact that the operators x̂ ′ = σ̂z and x̂ satisfy the same commutation
relations (1.2). So the magnetic 2-form ω must be invariant under the change of variables
x ′ → σx(x

′) �

Property (ii) is the symbol equivalent of the involution identity, �(x)2 = (πh̄)−2nI . Also
note that the pullback invariance, σ ∗

x ω = ω, means that the vector function αq satisfies the
tensor identity,

∂αq(q
′)j

∂q ′k − ∂αq(q
′)k

∂q ′j = Fjk(q
′) − Fjk(2q − q ′) (2.12)

which easily follows from (2.9).
The presence of reflective transformations on phase space allows one to identify a useful

family of curves. A continuous, piecewise differentiable function x : [−t, t] �→ R2n is called
a magnetic reflective curve with midpoint x(0) if

σx(0)(x(τ )) = x(−τ) τ ∈ [−t, t].
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Clearly a reflective curve has a central symmetry about its midpoint. These curves will be
used to define the boundary of the symplectic area of �(x, y, z) in lemma 4 below. In the case
where F = 0, the family of reflective curves admits straight lines having endpoints x(−t) and
x(t) and σx becomes the Grossmann–Royer transformation [29, 30]. The reflective curves
are the natural generalization of the midpoint/chord construct introduced by Berezin, Berry
and Marinov [11, 31, 32]. This generalization was used in [22] under the different name:
symmetric curves.

3. Magnetic multiplication

Now we present formulae for the magnetic ∗ product. This product has two distinct
representations. The first is given by a Berezin-type integral formula whose phase involves
a three-sided symplectic area. The second is a left, right regular representation expressed in
terms of pseudo-differential operators. We show how the family of magnetic reflections σ

interrelates these different representations and how it is associated with the groupoid core of
the ∗ product.

Observe that the linear envelope of quantizers forms an algebra. From (1.4) and (1.5) one
has

�(y)�(x) =
∫

K(z, y, x)�(z) dz. (3.1)

The complex functions K are the symbols of the operators �(y)�(x) and are regarded as the
‘structure constants’ of this algebra.

From lemma 1 (iii), it readily follows that

K(z, y, x) = (2πh̄)n tr(�(z)�(y)�(x)) = 1

(πh̄)2n
exp

{
i

h̄

∫
M(z,y,x)

ω

}
(3.2)

where M(z, y, x) is a straight-line triangle having z, y, x as midpoints of its sides. The
presence of the ‘midpoint’ delta functions in the quantizer kernel (2.7) collapses all the integrals
in the trace giving the simple exponential result seen above. The symplectic membrane formula
(3.2) in the magnetic phase space was first obtained (in another way) in [19]. A non-symplectic
version of the three-magnetic quantizer trace can be found in [33].

The kernel K in (3.2) gives us the integral representation of the magnetic product (1.6),

(f ∗ g)(z) =
∫ ∫

K(z, y, x)f (y)g(x) dy dx. (3.3)

The continuous function K(z, y, x) is invariant under any cyclic permutation of arguments;
under the permutation of any pair of arguments, K → K̄; it is the constant (πh̄)−2n if any pair
of arguments are the same. Also note that the trace operation in (3.2) is responsible for the
gauge invariance of the ∗ product. Although � has a U(1) gauge dependence, clearly M,ω

and K are invariant.
It turns out that the boundary of the membrane M(z, y, x) in (3.2) may be deformed in

many different ways while leaving the kernel function K(z, y, x) unchanged. Among these
deformations is a representation stated in terms of the σ reflective curves which incorporates
the groupoid properties of the magnetic product.

To see this, note that the magnetic product can be written

f ∗ g = f (L)g = g(R)f (3.4)

where L = (Lq, Lp) and R = (Rq, Rp) are Weyl-symmetrized sets of pseudo-differential
operators on the phase space R2n. Since the map f → f̂ is Weyl ordered, R = L̄. The
associativity of ∗ implies [L,R] = 0.
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In [19] it was established that

Lq = q + 1
2 ih̄∂p Rq = q − 1

2 ih̄∂p

Lp = p − 1
2 ih̄∂q − A(Lq,Rq) Rp = p + 1

2 ih̄∂q − A(Rq, Lq).

(3.5)

The vector function A is the two-point Valatin potential [34] (also referred to as the Schwinger–
Fock or radial gauge potential in the literature), obeying

∂A(q ′, q ′′)j
∂q ′k − ∂A(q ′, q ′′)k

∂q ′j = Fjk(q
′) (3.6)

(q ′ − q ′′)jA(q ′, q ′′)j = 0. (3.7)

So, with respect to its first argument, the potential A(q ′, q ′′) represents a primitive of the
Faraday 2-form, and satisfies the radial gauge condition (3.7). Taken together, equations (3.6)
and (3.7) uniquely determine the potential A(q ′, q ′′) giving the explicit formula

A(q ′, q ′′) =
∫ 1

0
F((τq ′ + (1 − τ)q ′′)(q ′ − q ′′)τ dτ. (3.8)

The Valatin potential is the τ -weighted average of the magnetic force on a unit charge moving
with velocity q ′ − q ′′ from q ′′ to q ′.

The function αq(q
′), defined by (2.9) and used in our construction (2.11) of the magnetic

reflections, is related to the Valatin potential via

αq(q
′) = A(q ′, 2q − q ′) + A(2q − q ′, q ′). (3.9)

From this equality and from the explicit formulae (3.5) it is straightforward to determine the
interrelationship between the L,R operators and the reflections σ . This statement requires
the introduction of an extended phase space T ∗R2n.

Lemma 3. Definition (2.11) of the magnetic reflection is equivalent to the following operator
identities:

σx(R) = L. (3.10)

Here L and R are the left and right operators (3.4) of the regular representation of the magnetic
algebra. If L and R are represented by the symbols

L = l(x,−ih̄∂/∂x) R = r(x,−ih̄∂/∂x) (3.11)

then (3.10) is equivalent to

σx(r(x, η)) = l(x, η) η ∈ T ∗
x R2n (3.12)

where

lq(x, η) = xq − ηp/2 lp(x, η) = xp + ηq/2 − A(lq, rq)

rq(x, η) = xq + ηp/2 rp(x, η) = xp − ηq/2 − A(rq, lq).
(3.13)

So the left and right vector functions l, r are defined on the space T ∗R2n. Since the
transformation (x, η) → (l, r) has a unique inverse either (x, η) or (l, r) may be used to
represent points m ∈ T ∗R2n ≈ R2n × R2n.

Recall that groupoid multiplication is defined on the extended space in the following
way. Two points m2,m1 ∈ T ∗R2n are multiplicable iff r(m2) = l(m1), and in this case,
their product is m = m2 ◦ m1 where l(m) = l(m2) and r(m) = r(m1). The set of units e
consists of the points where r(m) = l(m) or m = (x, y) with y = 0. The groupoid product
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◦ is non-commutative, associative and has inverse (l, r)−1 = (r, l). The transformations
l : T ∗R2n → R2n, r : T ∗R2n → R2n are left and right (target and source) mappings of the
groupoid structure on T ∗R2n which corresponds to the symplectic form ω on R2n (see the
general theory of symplectic groupoids in [20]). In view of (3.12), the magnetic reflections
σx relate the left and right images l(m) and r(m) in the symplectic groupoid to each other via
the central point x = x(m).

A way to visualize how this groupoid structure can be used to construct the symplectic
area phase for the ∗ product is the following. Given the three points x3, x2, x1 ∈ R2n, solve
the equation

m3 ◦ m2 ◦ m1 = e (3.14)

subject to the central conditions x(mi) = xi = (qi, pi), i = 1, 2, 3. It is easy to see that this
problem has a unique solution. The q projected image of (3.14) is just the triangle δ(q3, q2, q1)

in Rn
q defined by its midpoints (q3, q2, q1). The endpoints of sides of this triangle are the lq , rq

values appearing in the Valatin potential, A(lq, rq). Employing identities (3.13) fixes the three
complementary endpoints lp, rp. Now consider a three-sided membrane �(x3, x2, x1) in R2n.
Each side of its boundary is characterized by a triplet of points [ri, xi, li] and some reflective
curve that passes through these points. In the same way as in [19] one can check that∫

M(x3,x2,x1)

ω =
∫

�(x3,x2,x1)

ω. (3.15)

This gives us a groupoid-consistent boundary for the ∗ product membrane. We note the
allowed �(x3, x2, x1) boundary is non-unique or ‘floppy’ in character. Given the three sets
of points [li , xi, ri] satisfying the multiplicable property li = ri+1 there are many reflective
curves that are consistent with these data. Nevertheless the value

∫
�(x3,x2,x1)

ω is the same
for every allowed reflective curve boundary. As a result of (3.2) and (3.15) one has the
groupoid-compatible form of K.

Lemma 4.

K(z, y, x) = exp

{
i

h̄

∫
�(z,y,x)

ω

}
. (3.16)

Now using this formula for the kernel function K we obtain the associative non-
commutative multiplication of functions on phase space by means of (1.8).

In order to specify the set of functions which is closed with respect to the operation (1.8)
one needs to require smoothness and growth estimates on the magnetic field. We say that all
the derivatives of the field tensor F have polynomial growth at infinity if for some N < ∞
there are estimates∣∣Ds

qFjk(q)
∣∣ < C(s)(1 + |q|)N C(s) < ∞ s ∈ Zn

+. (3.17)

The growth power N is independent of s.

Theorem 1. Let all the derivatives of the field tensor F have polynomial growth at infinity.
Then the Schwartz space S(R2n) of all rapidly decreasing functions is closed with respect
to the magnetic product (1.8). This associative algebra has the irreducible representation
f → f̂ (1.4) in the Hilbert space L2(Rn) so that relation (1.6) holds.

The closure property is proved by using a representation of f ∗ g based on the Fourier-
transformed symbols f̃ , g̃ and suitable integration by parts of this representation. Property
(1.6) is a consequence of (3.1). The irreducibility follows from the fact that the set of generators
q̂, p̂ in (2.1) is irreducible.
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The algebra S(R2n) can be extended in order to include, say, polynomials in the generators
q̂, p̂. But for this one has to place much stronger restrictions on the F tensor growth. If F
has compact support one can certainly extend the algebra S(R2n) to S∞(R2n) consisting
of smooth functions whose derivatives have polynomial growth at infinity. In this case the
function 1 ∈ S∞(R2n) represents the unity element: f ∗ 1 = 1 ∗ f = f .

We note that, in view of lemma 1(iii), the magnetic Weyl correspondence f ↔ f̂ is a
unitary isomorphism from L2(R2n) to the space of Hilbert–Schmidt operators in L2(Rn). In
this paper, we do not undertake a full investigation of the spaces of operators and symbols
which realize the correspondence f ↔ f̂ . This is a separate technical (and often not simple)
question which has been extensively studied in the pseudo-differential operator literature
[13, 15, 20, 35–37]. The reader can consider all formulae as formally algebraic or, depending
on the formula, assume an appropriate simple symbol class such as polynomials, smooth
rapidly decreasing functions, etc.

4. Magnetic connection and ∗ product expansion

Let us now consider magnetic multiplication (1.8) as a one-parameter family of products
depending on h̄. Assume the smooth symbols f and g are h̄ independent.

All the coefficients of the h̄ → 0 expansion

f ∗ g = fg +
∑
k�1

1

k!

(
− ih̄

2

)k

ck(f, g) (4.1)

were described in [19] in terms of partial derivatives of the functions f, g and of the magnetic
tensor F (see also [38]).

Let us recall the structure of the first three coefficients ck(f, g). Of course, the leading
term is the Poisson bracket corresponding to ω,

c1(f, g) = {f, g} = f 〈←−D �
−→
D 〉g. (4.2)

The next two terms are

c2(·, ·) = 〈←−D �
−→
D 〉2 + 2

3∂sFkl(
←−
∂k

−→
∂ l

←−
∂ s − ←−

∂k
−→
∂ l

−→
∂ s)

c3(·, ·) = 〈←−D �
−→
D 〉3 + 2〈←−D �

−→
D 〉∂sFkl(

←−
∂k

−→
∂ l

←−
∂ s − ←−

∂k
−→
∂ l

−→
∂ s) (4.3)

+ ∂2
srFkl(

←−
∂k

−→
∂ l

←−
∂ s

←−
∂ r +

←−
∂k

−→
∂ l

−→
∂ s

−→
∂ r).

We indicate by D = (∂/∂q, ∂/∂p) the total derivative with respect to all the phase space
variables and denote by ∂k = ∂/∂pk the derivative by the momentum component. The arrows
indicate on which multiplier (left or right) the derivatives act. None of the derivatives act on
the tensor components of � or F. In particular

f (x)〈←−D �(x)
−→
D 〉Ng(x) ≡ (

Di1 · · · DiN f
)
(x)�i1j1(x) · · · �iN jN (x)

(
Dj1 · · · DjN

g
)
(x)

∂m
s1···sm

Fkl(q) ≡ ∂m

∂qs1 · · · ∂qsm
Fkl(q).

The disadvantage of formulae such as (4.3) is that they are not in covariant form. In
order to have a covariant expression one has to introduce a suitable connection on R2n and
replace the partial derivative D by a covariant derivative ∇. Thus the question at this stage
is the following. What is the connection that is consistent with the magnetic quantization?
Of course, the space R2n is equipped with the trivial Euclidean connection. However, this
Euclidean connection knows nothing about the magnetic 2-form ω and is not a symplectic
connection.
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But there is a natural symplectic connection induced by reflections σ .

Proposition 1. The family of magnetic reflections {σx} defines a symplectic connection with
respect to ω via the Christoffel symbols (1.10). The components �i

jk vanish unless j, k � n

and i > n. For i, j, k � n, the non-trivial portion of � at the point x = (q, p) ∈ R2n is the
following:

�i+n
jk ≡ �̃ijk = 1

2

∂2αq ′(q)i

∂qj ∂qk

∣∣∣∣
q ′=q

.

The explicit formula in terms of the magnetic tensor is

�̃ijk = 1
3 (∂kFij + ∂jFik). (4.4)

This connection has the curvature tensor

Ri
jkl = ∂

∂xk
�i

jl − ∂

∂xl
�i

jk

with the following non-zero components:

Ri+n
jkl ≡ R̃ijkl = 1

3∂2
ijFkl. (4.5)

Proof. From (1.10), since the explicit form (2.11) of σx is known in terms of the Valatin
potentials (see (2.10, 3.9)), the transformation of � under an arbitrary diffeomorphism
x → x̃ = x̃(x) is easily calculated and shows that � is a connection on R2n, cf [21].
The equality for the curvature results from the commutativity, �i

sk�
s
jl − �i

sl�
s
jk = 0.

Finally, consider the symplectic nature of this connection. Write the connection in block
matrix form

�i
jk = �[k]ij �[k] =

(
0 0

�̃[k] 0

)
. (4.6)

In this notation the covariant derivative of ω takes the form

∇kωij = (∂kω − �[k]T ω − ω�[k])ij .

One readily finds that

∇kω =
(

∂kF − �̃[k] + �̃[k]T 0
0 0

)
.

All the terms in the matrix above are individually zero if k > n. For k � n the upper left block
is

∂kFij − �̃[k]ij + �̃[k]ji = ∂kFij − 1
3 (∂kFij + ∂jFik) + 1

3 (∂kFji + ∂iFjk) = 0.

The last equality is a consequence of the closedness of form (1.1). �

If in �̃ijk the factor 1/3 is replaced by any other number then � ceases to be a symplectic
connection. Also, observe that � is a function of q, but not of p.

Remark. As is evident from its construction the connection � on R2n = Rn
q ⊕ Rn

q is
torsion free and non-metrical. However, it does depend on the metric in the following way.
The construction (2.11) of the q, p-components of the reflection map employs Euclidean
geodesics. The q linearity of q-components and the p linearity of the p-components of σx are
responsible for the 0-blocks in the tensor structure of � and R.

Stated covariantly formula (4.4) reads

�̃ijk = 1
3

(∇0
k Fij + ∇0

j Fik

)
(4.7)
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where ∇0
j are covariant derivatives on configuration space. In the framework of the present

paper ∇0
j = ∂j are just the Euclidean derivatives on Rn

q , but we can claim that formula (4.7)
actually represents the magnetic contribution to the phase space connection also on T ∗M for
any affine (in particular, Riemannian) configuration manifold M where ∇0 is non-trivial, for
instance, non-flat. In the general case, of course, the three other blocks in (4.6) will no longer
be zero (compare with [6]). We postpone the corresponding details to another paper.

Proposition 2. The coefficients c2 and c3 in the ∗ product expansion (4.1) have the covariant
form

c2(·, ·) = 〈←−∇ �
−→∇ 〉2 (4.8)

c3(·, ·) = 〈←−∇ �
−→∇ 〉3 + Rijkl(

−→∇ i

−→∇ j

−→∇ k

←−∇ l − ←−∇ i

←−∇ j

←−∇ k

−→∇ l). (4.9)

Here Rijkl = Ri
j ′k′l′�

j ′j�k′k�l′l , and ∇ is the covariant derivative with respect to the
symplectic connection � (1.10).

Proof. The non-covariant form of the k = 2 coefficient reads

c2(f, g) = f 〈←−D �
−→
D 〉2g + f M0(

←−
∂ ,

−→
∂ )g.

The M0 factor above is

M0(u, v) = 2
3ukus∂sFklv

l − 2
3uk∂sFklv

lvs = −(ukus�̃lsk(q)vl + uk�̃kls(q)vlvs).

Straightforward calculations show that

〈←−D �
−→
D 〉2 + M0(

←−
∂ ,

−→
∂ ) = 〈←−∇ �

−→∇ 〉2.

This establishes (4.8).
Consider next the O(h̄3) coefficient. It has the non-covariant form

c3(f, g) = f (〈←−D �
−→
D 〉3 + 3〈←−D �

−→
D 〉M0(

←−
∂ ,

−→
∂ ) + 3M1(

←−
∂ ,

−→
∂ ))g

where

M1(u, v) = 1
3

(
ukusur∂2

srFklv
l + uk∂2

srFklv
lvsvr

) = R̃srkl(u
surukvl − vsvrvkul).

A tensor computation then shows that

〈←−D �
−→
D 〉3 + 3〈←−D �

−→
D 〉M0(

←−
∂ ,

−→
∂ ) + 2M1(

←−
∂ ,

−→
∂ ) = 〈←−∇ �

−→∇ 〉3.

Thus the O(h̄3) coefficient becomes

c3(f, g) = f (〈←−∇ �
−→∇ 〉3 + R̃srkl(

←−
∂ s

←−
∂ r

←−
∂k

−→
∂ l − −→

∂ s
−→
∂ r

−→
∂k

←−
∂ l))g.

Finally, index raising by �(q) on R̃ gives the covariant c3(f, g) expression in (4.9). �

5. Quantization with arbitrary electromagnetic fields

So far it has been assumed that the magnetic fields are static. Now we consider the
modifications in the Weyl quantization that arise when the electromagnetic fields are time
dependent. The manner in which the electric field enters the symbol calculus is made explicit.

First it is helpful to clarify the role of the vector potential A in the static Weyl quantization.
Within the quantum phase space framework, the potential A never appears. The ω symplectic
form and Poisson brackets, the symplectic area �, the connection �, the ∗ product and its
expansion coefficients ck are all defined directly in terms of the magnetic tensor F. However,
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the 2-point Valatin potential A(q ′, q ′′) (3.8), which is a non-local gauge invariant object, does
appear spontaneously as a contribution to the l, r functions and is essential in the definition
of the reflection symmetry σx and the groupoid product. Only when one goes to the Hilbert
space representation, via f → f̂ , cf (1.6), (2.1), is any gauge fixing required. In order to
represent the quantizer �(x), a vector potential A (consistent with F) must be employed. One
convenient gauge choice for A is to use again the Valatin potential with a fixed 2nd argument.
This was the option selected in our prior work [19], where the fixed 2nd argument was
set to 0.

Let B(t, q) denote the magnetic field. In the n = 3, time-dependent case the 2-form
becomes

ω(t) = dp ∧ dq + B1(t, q) dq2 ∧ dq3 + B2(t, q) dq3 ∧ dq1 + B3(t, q) dq1 ∧ dq2. (5.1)

Similarly, the quantum commutation relations (1.2) acquire time dependence via the
momentum components by [p̂j (t), p̂k(t)] = ih̄εjklBl(t, q̂).

Replacing the static ω with ω(t) in (1.8) defines a ∗ product that is time dependent. This
time dependence results from the t varying magnetic flux through the triangle δ(q3, q2, q1).
Likewise the quantizer, the left, right coordinates, the reflection symmetry σx and the magnetic
connection all acquire an obvious t dependence.

In order to fix the quantizer and obtain a unique irreducible Hilbert space representation,
the quantum coordinates (2.1) need to be defined. Let us work in the Coulomb gauge
where the 4-vector potential a(t, q) ≡ {−φ(t, q), A(t, q)} has a vanishing scalar component,
φ(t, q) = 0. There is no loss of generality in this Coulomb gauge assumption since given a
general 4-vector one may, by a known unitary transformation, always gauge away the scalar
component. In the Coulomb gauge

B(t, q) = ∇ × A(t, q) E(t, q) = − ∂

∂t
A(t, q). (5.2)

Define q̂, p̂(t) by (2.1) with the static A(q) replaced by A(t, q). From (2.1) and (5.2) it
follows that

d

dt
p̂(t) = E(t, q̂). (5.3)

This approach is based on the separation of time and space variables that is needed
for solving the Cauchy problem, see details in [19]. With this separation we observe that the
quantum phase space coordinates have acquired time-dependent momentum components. The
magnetic field B(t, q) determines the symplectic structure via (5.1), whereas in the Coulomb
gauge the electric field E(t, q) generates the motion of the kinetic coordinates p̂(t). The
magnetic curvature Ri

jkl(t, q) is time dependent on the phase space R6 = R3
q ⊕ R3

p and does
not sense the electric field.

Another view point is to include the time and space variables together into the configuration
space R4

t,q . Then the symplectic form and the magnetic curvature tensor on the space

R8 = R4
t,q ⊕ R4

pt ,p
will now depend on the electric field as well.

6. Zero magnetic curvature

Let us return to the static situation. The magnetic connection (1.10) is determined by the first
derivatives of the tensor F. Its curvature is determined by the second derivatives.

The simplest case is the homogeneous magnetic field that is F = const. In this case
the Christoffel symbols � are just zero (in the Euclidean basis), and the magnetic connection
coincides with the Euclidean connection on R2n = T ∗Rn.
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The second simple example is that of a linear magnetic field, that is

Fij (q) = Fij,kq
k Fij,k = −Fji,k Fij,k + Fjk,i + Fki,j = 0. (6.1)

This is the Lie algebra case; the commutation relations (1.2) are linear. In this case the
magnetic connection becomes a constant,

�̃ijk = 1
3 (Fij,k + Fik,j ) (6.2)

and so the magnetic curvature is zero: R = 0. The reflection symmetry σx in this case is
realized by quadratic mappings

σx(y) = 2x − y −
(

0
�̃·,jk(xq − yq)

j (xq − yq)
k

)
. (6.3)

Let us consider the following non-symplectic change of variables in R2n:

q ′ = q p′ = p + A(q). (6.4)

Here A is a magnetic potential satisfying (2.2). Under this transformation the magnetic form
ω is transformed into the canonical form: ω′ = dp′ ∧ dq ′.

For instance, one can take A to be the Valatin potential with fixed second argument 0,

Ai(q) = Ai(q, 0) = 1
3Fij,kq

jqk = 1
2 �̃ijkq

j qk (6.5)

which satisfies the radial gauge condition (3.7), qiAi(q) = 0. For a quadratic A, the x → x ′

variable change maps the magnetic connection � into �′ = 0 (the Euclidean connection).
The form ω′ and the connection �′ generate the usual Groenewold ∗ product over R2n,

which can be expressed both in the integral form and in the derivative form

(f ′ ∗′ g′)(x ′) = 1

(πh̄)2n

∫∫
exp

{
i

h̄

∫
M(x ′,y ′z′)

ω′
}

f ′(y ′)g′(z′) dy ′ dz′ (6.6)

(f ′ ∗′ g′)(x ′) = f ′(x ′) exp

{
− ih̄

2
〈←−D

′
� ′−→D

′
〉
}

g′(x ′). (6.7)

Here � ′ = [
0 −I
I 0

]
is the Poisson tensor corresponding to the symplectic form ω′, the

derivatives D′ = ∂/∂x ′ are taken with respect to the coordinates x ′ = (q ′, p′), and the
membrane M(x ′, y ′, z′) is just the triangle in R2n with midpoints x ′, y ′z′.

In formulae (6.7), (6.6) we denote the symbols f ′, g′ by primes in orders to emphasize
that these functions are expressed in the new coordinate system x ′ = (q ′, p′). Of course,
there is a correspondence with the functions in the previous (magnetic) coordinate system
x = (q, p), namely

f (x) = f ′(x ′) x ↔ x ′ by (6.4).

In the magnetic coordinates we have the magnetic product (1.8). So the question arises: does
this magnetic product correspond to the Groenewold product under this change of variables?

Proposition 3. Assume that the magnetic curvature R is zero, that is the magnetic tensor F is
linear. Let the change of variables (6.4) satisfy the radial gauge condition, i.e. the potential A

is given by (6.5). Then under this quadratic change of variables x ↔ x ′ the magnetic product
(1.8) generated by the form ω (1.1) corresponds to the Groenewold product (6.6) generated
by the form ω′ = dp′ ∧ dq ′.

In particular, the Groenewold differential formula (6.7) implies the following
representation of the magnetic product:

(f ∗ g)(x) = f (x) exp

{
− ih̄

2

←−∇ �(x)
−→∇

}
g(x) (6.8)
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where � is the magnetic Poisson tensor, and where the covariant derivatives are given by the
flat magnetic connection (6.2).

Proof. First perform the variable change x → x ′ in the M-integral representation of the ∗
product, cf (3.2), (3.3). If A is quadratic, one readily finds that∫ ∫

exp

{
i

h̄

∫
M(z,y,x)

ω

}
f (y)g(x) dy dx =

∫ ∫
exp

{
i

h̄

∫
M(z′(z),y ′,x ′)

ω′
}

f ′(y ′)g′(x ′) dy ′ dx ′.

This establishes that (f ∗ g)(x) = (f ′ ∗′ g′)(x ′(x)) and verifies that f ∗ g is given by
the right-hand side of (6.7). Now implement the inverse transform x ′ → x and employ

f ′〈←−D
′
� ′−→D

′
〉Ng′ = f 〈←−∇ �(x)

−→∇ 〉Ng to obtain (6.8). �

The content of proposition 3 agrees well with known formulae for formal ∗ products
over flat symplectic manifolds [1, 12]. But we see that our formula (6.8) actually holds for
the non-formal strict ∗ product (1.8) which has the operator representation (1.6), and that the
connection ∇ in (6.8) is exactly the magnetic connection (1.10).

The change of variables (6.4) can also be carried out for general nonlinear tensors F.
Again the Groenewold formula (6.7) generates in this way a certain product

(f × g)(x) ≡ f (x) exp

{
− ih̄

2
〈←−∇

A

�(x)
−→∇

A

〉
}

g(x) (6.9)

where ∇A corresponds to the flat connection with Christoffel symbol components �̃ijk =
∂2
jkAi(q). However, here the approach of deriving the magnetic ∗ product through the variable

change (6.4) fails. The product (6.9) is not related to the magnetic product and the flat
connection ∇A is not the magnetic connection, if F is not linear.

7. Constant magnetic curvature

Constant magnetic curvature means that the tensor F is quadratic. There is no loss in generality
here in assuming that F is purely quadratic with no linear component. In detail

Fij (q) = Fij,klq
kql Fij,kl = −Fji,kl Fij,kl = Fij,lk

Fij,kl + Fjk,il + Fki,j l = 0.
(7.1)

In this case, the commutation relations (1.2) are quadratic and the algebra is not a Lie algebra.
The magnetic connection and curvature are given by

�̃ijk(q) = 2
3 (Fij,kl + Fik,j l)q

l R̃ijkl = 2
3Fkl,ij . (7.2)

The magnetic reflection is still a quadratic mapping:

σx(y) = 2x − y −
(

0
�̃(xq)·,jk(xq − yq)

j (xq − yq)
k

)
. (7.3)

Lemma 5. Let the Faraday F tensor be quadratic, that is, the magnetic curvature be constant.
Then the reflections σx (7.3)

(i) are affine with respect to the magnetic connection (map geodesics into geodesics);
(ii) satisfy the symmetry condition (1.12) and

(iii) coincide with geodesic reflections generated by the magnetic connection.
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Proof. (i) Let γ (ξ) = (q(ξ), p(ξ)), ξ ∈ [−1, 1] be a generic magnetic geodesic. The zero
block structure of � allows one to state the geodesic equation of motion as

γ̈ i (ξ) + �i
jk(q(ξ))q̇j (ξ)q̇k(ξ) = 0 j, k � n. (7.4)

Since �i
jk = 0 for i � n, q̈(ξ) = 0 and q̇(ξ) = const.

Set γ ′(ξ) ≡ σx(γ (ξ)); we must show γ ′ is a geodesic. For σx given by (7.3), the second
derivative of γ ′ is

γ̈ ′i (ξ ) = −γ̈ i (ξ) − 2�i
jk(xq)q̇

j q̇k.

Use q(ξ)+q ′(ξ) = 2xq ; the q-linearity of �, 2�i
jk(xq) = �i

jk(q(ξ))+�i
jk(q

′(ξ)) and q̇ = −q̇ ′
to show the above identity is equivalent to

γ̈ ′i (ξ ) + �i
jk(q

′(ξ))q̇ ′j q̇ ′k = −(
γ̈ i (ξ) + �i

jk(q(ξ))q̇j q̇k
) = 0. (7.5)

Thus γ ′ is a geodesic.
A similar argument verifies (iii); item (ii) results from a straightforward algebraic

calculation. �

Note that property (ii) means that in the quadratic case the reflections σx (7.3) determine
the symmetric symplectic structure on the phase space R2n in the sense of [23].

Corollary 1. If the magnetic tensor is quadratic, then the magnetic product can be represented
by formula (1.8) using membranes �(z, y, x) bounded by three magnetic geodesics with
midpoints z, y, x.

Considering higher terms in the formal h̄-power expansion (4.1) in the covariant form
(1.9), (4.8) and (4.9) we can conjecture the following generalization of the Groenewold
representation.

Conjecture. If the magnetic curvature is constant (that is, F is quadratic), then

f ∗ g = f exp

{
− ih̄

2
〈←−∇ �(x)

−→∇ 〉 +
ih̄3

48
Rijkl(

−→∇ i

−→∇ j

−→∇ k

←−∇ l − ←−∇ i

←−∇ j

←−∇ k

−→∇ l )

}
g (7.6)

where R is the magnetic curvature with raised indices, and ∇ is the magnetic connection.

8. Conclusions

The quantum coordinates q̂j and kinetic momenta p̂k of a charged particle know about the
presence (or absence) of magnetic field via the commutation relations between momenta [39].
In general, these commutation relations are nonlinear.

Weyl-symmetrized functions in the operators q̂, p̂ form an algebra. The symbol image of
the multiplication in this magnetic algebra can be represented (exactly) by a simple integral
formula (1.8) via the magnetic symplectic form ω and membranes � having a groupoid-
consistent boundary. This is an example of perfectly quantizable phase space.

The groupoid structure, corresponding to the form ω, is controlled by a family of magnetic
reflections (2.11), which are generated by the regular left and right representations (3.5) of the
magnetic algebra.

The family of magnetic reflections determines a symplectic connection �, (1.10). The
magnetic ∗ product (1.8) has a covariant derivative asymptotic expansion (1.9) whose h̄3 term
(1.11) is given by the curvature of this connection.

In the zero-curvature case, the magnetic ∗ product can be independently recovered from
the standard (non-magnetic) Groenewold exponential formula by a non-symplectic change
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of variables. The resultant exponential formula is stated in terms of covariant derivatives
generated by the magnetic connection.

The case of constant (but non-zero) curvature represents an interesting example of a
symplectic symmetric space. The magnetic ∗ product in this case is given either via a geodesic
bounded membrane area or via the explicit covariant differential formula (7.6) with magnetic
curvature tensor in the exponent.

The h̄3 term in the h̄ → 0 expansion of our magnetic ∗ product, in the constant-curvature
case, is different from the corresponding term in the known Bieliavsky–Cahen–Gutt product
[23] (given for general symplectic symmetric spaces). In the general non-constant-curvature
case a difference of numerical coefficient in the h̄3 terms can also be observed in the comparison
with the Fedosov deformation expansion [4].

Of course, on the level of formal h̄ power series all associative ∗ products are equivalent
[5]. But only some of them, such as our expansions (1.9), (1.11), are related to exact
products possessing an irreducible operator representation in a Hilbert space. Such an operator
representation does not allow generic h̄-pseudo-differential transformations (allowed by the
formal ∗ products). The condition that the ∗ product admits an exact irreducible operator
representation in essence restricts the variety of ∗ products (see in [7]).

The magnetic connection and its curvature, which we extract from the quantum algebra,
is determined by the magnetic tensor F, but not in the way it usually appears in gauge-field
theory via U(1)-line bundles [14], nor in the way suggested by Weyl nearly a century ago
[40]. For instance, the magnetic connection is defined on the phase space rather than on
the configuration space. This magnetic connection is clearly important in the quantization
process, but we also anticipate that it can be observed in the dynamical and spectral problems
involving magnetic fields such as the Fock–Landau level problem in the inhomogeneous case.
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[25] Cartan É 1926 Sur une classe remarquable d’espaces de Riemann Bull. Soc. Math. France 54 214–64
[26] Anderson R F V 1969 On the Weyl functional calculus J. Funct. Anal. 4 240–67
[27] Anderson R F V 1970 On the Weyl functional calculus J. Funct. Anal. 6 110–5
[28] Stratonovich R L 1956 A gauge invariant analog of the Wigner distribution Sov. Phys. D 1 414–8
[29] Grossmann A 1976 Parity operator and quantization of δ-functions Commun. Math. Phys. 48 191–4
[30] Royer A 1977 Wigner function as the expectation value of a parity operator Phys. Rev. A 15 449–50
[31] Berry M V 1977 Semi-classical mechanics in phase space: a study of Wigner’s function Phil. Trans. R. Soc. A

287 237–71
[32] Marinov M S 1979 An alternative to the Hamilton–Jacobi approach in classical mechanics J. Phys. A: Math.

Gen. 12 31–47
[33] Dodonov V V, Man’ko V I and Ossipov D L 1992 Gradient-invariant Weyl representation. An oscillator in

an inhomogeneous magnetic field Theory of Nonstationary Quantum Oscillators (Proc. Lebedev Phys. Inst.
vol 198) ed M A Markov pp 1–58

[34] Valatin J G 1954 Singularities of electron kernel functions in an external electromagnetic field Proc. R. Soc. A
222 93–108

[35] Folland G B 1989 Harmonic Analysis in Phase Space (Princeton, NJ: Princeton University Press)
[36] Hormander L 1979 The Weyl calculus of pseudo-differential operators Commun. Pure Appl. Math. 32 359–443
[37] Karasev M V and Nazaikinskii V E 1978 On quantization of rapidly oscillating symbols Math. USSR-Sb. 34

737–64
[38] Müller M 1999 Product rule for gauge invariant Weyl symbols and its application to the semiclassical description

of guiding centre motion J. Phys. A: Math. Gen. 32 1035–52
[39] Dyson F J 1990 Feynman’s proof of the Maxwell equations Am. J. Phys. 58 209–11
[40] Weyl H 1918 Gravitation and electricity Sitzungsber. Preuss. Akad. Berlin 465


